<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connect Menu</td>
<td>26</td>
</tr>
<tr>
<td>Sync Now</td>
<td>26</td>
</tr>
<tr>
<td>Auto Sync</td>
<td>26</td>
</tr>
<tr>
<td>USB Drive</td>
<td>26</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>28</td>
</tr>
<tr>
<td>Bluetooth Wireless Printer</td>
<td>29</td>
</tr>
<tr>
<td>WiFi</td>
<td>29</td>
</tr>
<tr>
<td>Updates</td>
<td>30</td>
</tr>
<tr>
<td>Application Notes</td>
<td>31</td>
</tr>
<tr>
<td>Measuring on rough surfaces</td>
<td>31</td>
</tr>
<tr>
<td>Measuring on dense (hard) surfaces</td>
<td>32</td>
</tr>
<tr>
<td>Measuring total thickness (multi-layers applications)</td>
<td>32</td>
</tr>
<tr>
<td>Troubleshooting - General</td>
<td>32</td>
</tr>
<tr>
<td>Gage does not turn on</td>
<td>32</td>
</tr>
<tr>
<td>Gage powers up but fails to stay on</td>
<td>32</td>
</tr>
<tr>
<td>Gage readings are lower than expected</td>
<td>32</td>
</tr>
<tr>
<td>Gage readings are higher than expected</td>
<td>33</td>
</tr>
<tr>
<td>Gage does not yield accurate or consistent results</td>
<td>33</td>
</tr>
<tr>
<td>Gage displays an error message</td>
<td>33</td>
</tr>
<tr>
<td>Gage displays dashed line “----”</td>
<td>33</td>
</tr>
<tr>
<td>and emits low-tone buzz</td>
<td>33</td>
</tr>
<tr>
<td>Power Supply / Battery Indicator</td>
<td>34</td>
</tr>
<tr>
<td>Rechargeable Batteries</td>
<td>34</td>
</tr>
<tr>
<td>Additional Accessories</td>
<td>34</td>
</tr>
<tr>
<td>Coating Thickness Standards</td>
<td>36</td>
</tr>
<tr>
<td>Technical Data</td>
<td>37</td>
</tr>
<tr>
<td>Probe Details & Specifications</td>
<td>37</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>37</td>
</tr>
<tr>
<td>Size / Weight</td>
<td>37</td>
</tr>
<tr>
<td>Returning For Service</td>
<td>38</td>
</tr>
<tr>
<td>Warranty</td>
<td>38</td>
</tr>
</tbody>
</table>
Introduction

The PosiTector 200 is a hand-held Coating Thickness Gage that uses a non-destructive ultrasonic principle to measure coating thickness on a wide variety of substrates. It consists of a body (Standard or Advanced) and a probe (see Probes pg. 7).

PosiTector 200 Kit Contents
- PosiTector body (Standard or Advanced)
- PosiTector probe (200 B, C or D)
- Protective rubber cap for Probe
- Protective lens shield
- Wrist strap
- 3 AAA alkaline batteries
- Quick Guide instruction booklet
- Protective rubber holster
- Nylon carrying case with shoulder strap
- Belt clip for rubber holster and carrying case
- USB Cable
- 4 ounce (118 ml) bottle ultrasonic couplant
- Precision Plastic Shims
- 2500 microns (100 mils) Polystyrene Block (C & D Probe only)
- Certificate of Calibration traceable to NIST
- PosiSoft.net account
- Two (2) year warranty on Body and Probe

Quick Start

The PosiTector 200 powers-up when the center navigation button \[\text{\textbf{\textbullet\textbullet\textbullet}}\] is pressed. To preserve battery life, the Gage powers down after approximately 5 minutes of no activity. All settings are retained.

1. Remove the protective rubber cap from the probe.
2. Power-up Gage by pressing the center navigation button \[\text{\textbf{\textbullet\textbullet\textbullet}}\]
3. Zero the probe. (see pg. 11)
4. Adjust to a known thickness, if necessary. (see pg. 12)
5. Measure the part. (see pg. 8)
Certification
All PosiTector 200 probes include a Certificate of Calibration. For organizations with re-certification requirements, instruments may be returned at regular intervals for calibration.

DeFelsko recommends that customers establish calibration intervals based upon their own experience and work environment. Based on our product knowledge, data and customer feedback, a one year calibration interval from either the date of calibration, date of purchase, or date of receipt is a typical starting point.

Protective Cap
PosiTector 200 gages ship with a protective rubber cap over the probe. Remove this cap prior to use. Replace it when the Gage is not in use to protect the probe.

Wrist Strap
We recommend attaching and wearing the supplied wrist strap.

Protective Lens Shield
The LCD is covered with a thin plastic film for protection against fingerprints and other marks during shipment. This film, while usually removed before using the Gage, can be left in place to protect against paint overspray or debris. Replacements can be purchased.

Couplant
Couplant is required to propagate ultrasound into the coating. Water is a good couplant for smooth coatings. Use the supplied glycol gel for rougher coatings. While it is unlikely that the couplant will damage the finish or leave a stain on the surface, we suggest testing the surface by using the couplant on a sample. If testing indicates that staining has occurred, a small amount of water can be used instead of couplant. Consult the Material Safety Data Sheet available on our website and your coating supplier if you suspect the couplant may damage the coating. Other liquids such as liquid soap may also be used.
Typical Display

2.1

- USB Port
- LCD Display
- Probe Connector
- 200 B probe
- 200 C probe
- 200 D probe

Battery Icon
Current Measurement
Unit of Measurement
Factory Calibration settings in use.
Probes

To disconnect a probe from a body, power-down the Gage and slide the plastic probe connector horizontally (in the direction of the arrow) away from the body. Reverse these steps to attach a new probe.

When powered-up the PosiTector automatically determines what type of probe is attached and does a self-check.

PosiTector 200 probes are available for measuring a wide variety of coating thickness applications.

- **B probe** - 13 to 1000 microns (0.5 to 40 mils)
 - Ideal for polymer coatings on wood, plastic, composites, etc.
- **C probe** - 50 to 3800 microns (2 to 150 mils)
 - Ideal for thicker coatings on concrete, fiberglass, etc.
- **D probe** - 50 to 5000 microns (2 to 200 mils) - Polyurea
 - 50 to 7600 microns (2 to 300 mils) - Other Coatings
 - Ideal for thick or soft (attenuative) coatings

NOTE: Range limits apply to polymer coatings only.

Additionally, the *PosiTector* accepts a number of probe types including magnetic and eddy current coating thickness, surface profile, environmental and ultrasonic wall thickness probes. Perform the latest software **Updates** (pg. 30) to ensure probe compatibility with your Gage. For the latest information on probe interchangeability see www.defelsko.com/probes
Ultrasonic Thickness
Theory of Operation

The *PosiTector 200* probe emits a high frequency sound pulse that travels into the coating via a coupling gel and reflects from ANY surface that is different in density. Coating thickness readings are obtained by measuring the time taken for the ultrasonic signal to propagate from the probe to the coating/substrate interface and back. The travel time is divided by two and multiplied by the velocity of sound in the coating to obtain the thickness of the coating.

![Diagram of Ultrasonic Thickness Measurement]

The *PosiTector 200* interprets the largest "echo" within the selected range as the coating/coating or coating/substrate echo.

How to Measure

1. Remove the protective rubber cap from probe.
2. Power-up Gage by pressing the center navigation button.
3. Apply couplant (see pg. 5) to the surface of the part.
4. Place the probe FLAT on the surface and press down.
5. Lift the probe when you hear a double BEEP, - OR - leave probe on the surface in the same location for continuous measurements.
6. When completely finished, wipe the probe clean of couplant then return the Gage to the protective pouch. There is no need to disconnect the probe from the *PosiTector* during storage.
Calibration, Verification and Adjustment

Three steps ensure best accuracy...

1. **Calibration** - typically done by the manufacturer or a qualified lab. All probes include a Certificate of Calibration

2. **Verification of Accuracy** - as done by the user on known reference standards such as the included plastic shims or optional coating thickness standards.

3. **Adjustment** - to a known thickness

Calibration
Calibration is the controlled and documented process of measuring traceable calibration standards and verifying that the results are within the stated accuracy of the Gage. Calibrations are typically performed by the Gage manufacturer or by a certified calibration laboratory in a controlled environment using a documented process.

Verification
Verification is an accuracy check performed by the user using known reference standards. A successful verification requires the Gage to read within the combined accuracy of the Gage and the reference standards.

Adjustment
Adjustment, or Calibration Adjustment is the act of aligning the Gage's thickness readings to match that of a known reference sample in order to improve accuracy of a Gage on a specific coating. See *Thickness* pg. 12.
Menu Operation

Gage functions are menu controlled. To access the Menu, power-up the Gage, then press the center navigation button.

Below is a sample menu for a PosiTector 200 Advanced model:

Some buttons have a tick box to their right to indicate current status. An empty box indicates that feature is not active.

Current selection is displayed with darkened background.

To navigate, use the Up and Down buttons to scroll and Center button to SELECT.

Select Exit to exit from any menu.

NOTE: The center button is purposely recessed to help eliminate unintentional powering-up of the Gage.
Cal Settings Menu

Zero

PosiTector 200 probes must be periodically zeroed using the ZERO menu option to compensate for both extreme temperature and probe wear effects. Before using, allow the probe to reach ambient temperature.

If measurements will be made in extreme hot or cold temperatures, it is recommended to ZERO the probe in the working environment. If measurements will be made on rough substrates, it is recommended to periodically ZERO the probe to compensate for wear.

1. Make sure the Gage is on and the probe is wiped clean.
2. Hold probe in air, away from substrate.
3. Select the Zero menu option.
4. When complete, Gage will double beep and display “----”.

Set Range

The measuring range of each probe can be changed depending on the specific application or the expected thickness range of the coating system.

For most applications, the default range values do not have to be adjusted. But some conditions, like surface roughness, may cause the Gage to display very low or non-repeatable readings. In this case, the low range may be increased to cause the Gage to only display readings above the Lo value set by the user.

To adjust Set Range values...

1. Select Lo or Hi with the Up and Down buttons.
2. Use the (-)(+) buttons to decrease/increase the displayed value.

IMPORTANT:

The PosiTector 200 interprets the largest “echo” or “echoes” within the selected range as the coating/coating or coating/substrate echo. If the coating thickness is outside this range, incorrect or dashed readings may occur.
Here are some typical Range settings...

<table>
<thead>
<tr>
<th>Expected paint thickness</th>
<th>Lo Range</th>
<th>Hi Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>500µm (20 mils) on concrete</td>
<td>130µm (5 mils)</td>
<td>1000µm (40 mils)</td>
</tr>
<tr>
<td>50µm (2 mils) on wood</td>
<td>25µm (1 mil)</td>
<td>250µm (10 mils)</td>
</tr>
</tbody>
</table>

Thickness

The **PosiTector 200** measures most polymer coatings accurately out-of-box with no adjustment required.

To determine if an adjustment is necessary, select a coating sample of known thickness as close as possible in composition to the intended application. For best results, the thickness of the sample should be equal to or slightly greater than the maximum expected thickness of the coating to be measured.

Measure the coated sample. If the average of a series of measurements on the sample is not close to the known thickness...

1. Select the **Thickness** menu option.
2. Use (-) or (+) to decrease/increase the displayed measurement thickness value to match the known thickness of the sample.
3. For *Advanced models* with multiple layers selected, use the **Down** navigation button to select the next layer and adjust as necessary.
4. To save adjustments, use **Down** navigation button to highlight **OK** and press the center navigation button.

Polyurea

(PosiTector 200 D probes only)

When checked, the Gage loads a pre-programmed calibration adjustment optimized for measurement of polyurea coatings. “Polyurea” will appear on the upper right corner of the display.

NOTE: D Probe Measuring Range: 2 - 200 mils (50 - 5000 um)

Cal Lock

When checked, the **icon appears and the current calibration settings are “locked” to prevent further user adjustments.

Cal Reset

Restores the Gage back to factory calibration and range settings. The **icon will appear on the display.
Setup Menu

Reset

Reset (soft reset) restores factory settings and returns the Gage to a known condition. The following occurs:

- All batches, stored measurements, images, batch names and screen captures are erased.
- All calibration and range adjustments are cleared and returned to the Gage’s factory settings.
- The 🔄 icon will appear on the display.
- Menu settings are returned to the following:

 - **Memory** = OFF
 - **Bluetooth** = OFF
 - **Layers** = 1
 - **Graphics** = ON
 - **Display** = None
 - **Layer Name** = Layer 1
 - **Cal Lock** = OFF
 - **Layer Color** = blue

Perform a more thorough **Hard Reset** by powering down the Gage, waiting several seconds, then simultaneously holding both the center 📸 and (+) buttons until the Reset symbol 🔄 appears. This returns the Gage to a known, “out-of-the-box” condition. It performs the same function as a menu Reset with the addition of:

- Bluetooth Pairing info is cleared.
- Menu settings are returned to the following:

 - **Units** = microns
 - **Flip Display** = Normal
 - **White on Black** = OFF
 - **Language** = English
 - **Battery Type** = Alkaline
 - **Backlight** = Normal
 - **USB Drive** = ON
 - **Auto Sync** = OFF
 - **Polyurea** = OFF

NOTE: Date, Time and WiFi settings are not affected by either Reset.
Gage Info
Displays the model number & serial number, probe type & serial number, PosiSoft.net registration key, the amount of remaining memory for storage of readings, date and time and software packages.

For security purposes, the registration key is required to add the Gage to your PosiSoft.net account.

Graphics (Advanced models only)
When selected, the Gage displays a graphical representation of the ultrasonic pulse as it travels through the coating system.

As the probe is depressed and the ultrasonic pulse travels through the coating system, the pulse encounters changes in density at the interfaces between coating layers and between the coating and the substrate.

These interfaces are depicted by a "peak". The greater the change in density, the higher the peak. The more gradual the change in density, the greater the width of the peak. For example, two coating layers made of essentially the same material and "blended" would result in a low, wide peak. Two materials of very different density and a well-defined interface would result in a high, narrow peak.

The PosiTector 200 chooses the highest peak (single layer) or peaks (multi-layer) within the Set Range. For example, if the number of layers is set to 3, the three highest peaks would be identified with small red triangles. The peak values are also displayed numerically as thickness measurements.

NOTE: The Graphics display can also be accessed using the Set Range menu option.
Use the navigation **Up** (move left) and **Down** (move right) buttons to highlight icons on the graphic display.

Cursor - The Cursor allows for further analysis of displayed waveform. Use the (-)(+) buttons to move the green cursor line left or right over the waveform. The thickness value is displayed at the top right of the cursor line. This feature is particularly useful in multi-layer applications where there are more than 3 distinct layers.

Screen Capture - Press 📸 to capture and save an image copy of the current display. The last 10 screen captures are stored in memory and can be accessed when connected to a computer. (see examples pg. 22 and PosiSoft USB Drive pg. 23)

Set Range - Press the (-) or (+) buttons to adjust the Gage’s Lo or Hi measuring range. (see pg. 11).

Zoom - Visually magnifies the waveform of the displayed peaks for more visibility. Pressing the (+) or (-) button repeatedly will increase/decrease the zoom.

Menu - Press 📦 to access the Gage’s main menu.

Exit - Press 🚫 to close the Graphics display. Press the **Up** button to return to the Graphics display.
Advanced models of the PosiTector 200 are capable of numerically displaying up to three individual layer thicknesses in a multi-layer system.

Example: Two Layer Application

From the Layers menu option...

Select up to three individual layer thickness values:

Edit:
- Edit Layer Names (up to 7 characters)
- Edit Layer Color (blue, green or red) - See Display, pg. 21.

NOTES:
- Before setting up the Gage for multi-layer measurement, it is recommended that you first take measurements in single layer mode and interpret the results using the Graphics option (see pg. 14)
- When a batch is Open, press the Up button to view the Batch Chart.
Battery Type

Selects the type of batteries used in the Gage from a choice of “Alkaline”, “Lithium” or “NiMH” (Nickel-metal hydride rechargeable). If NiMH is selected, the Gage will trickle charge the batteries while connected via USB to a PC or optional AC charger (Gage must be powered ON). The battery state indicator icon is calibrated for the selected battery type. No damage will occur if the wrong battery type is selected.

DeFelsko recommends *eneloop* (NiMH) rechargeable batteries (pg. 34).

Units

Converts the display from inch to metric or vice versa. Stored measurements in memory are not converted.

Switching units will turn off Statistics view and closes Memory.

Language

Converts displayed and printed words to the selected language.
Memory Management

The PosiTector 200 has internal memory storage for recording measurement data. Stored measurements can be reviewed on-screen or accessed via computers, tablets and smart phones. Measurements are date and time-stamped.

The Memory Menu includes the following options...

- **On**: turns memory on and begins recording
- **Off**: stops recording (stored readings remain in memory)
- **Clear**: removes all readings from memory
- **View**: lists group statistics and all stored readings on the display. It will begin by showing statistics based on all readings in memory. Use the Up and Down buttons to scroll through all readings. Press to exit.

Standard Model display with Memory ON shows measurement statistics:

- Mean (average)
- Maximum measurement
- Minimum measurement
- Last reading
- Standard Deviation
- # of readings in memory

Standard models store up to 250 readings in one batch.
Advanced models store 100,000 readings in up to 1,000 batches. The Memory Menu includes the following options...

New Batch
Closes any currently opened batch and creates a new batch name using the lowest available number. For example, if only Batch 1 and Batch 3 exist, then Batch 2 would be created and made the current batch. The icon appears and basic statistics are displayed. Each measurement will be displayed and stored into this new batch. On screen statistics are immediately updated with each measurement. New batch names are date stamped at the time they are created. Each reading is also data/time stamped.

Shortcut: When a batch is open, press (+) to create a new batch

NOTES:
- Remove the last reading from the current open batch by pressing (-).
- Calibration adjustments cannot be made if readings are stored in memory.
- If memory is ON, continuous measurements can be taken but results will not be stored in memory.

Open
Selects a previously created batch name to open and make current. If it contains measurements, onscreen statistics will immediately reflect values calculated from this batch.

Close
Stops the recording process, closes the current batch, and removes batch information from the display.
Delete

Removes a batch completely from memory. The name is deleted and all measurements are erased.

View

Scroll using the **Up** or **Down** buttons through information, statistical summary, and a list of each reading in the currently opened batch.

Press 📷 to exit.

Annotate

Create meaningful batch names and enter notes directly on the Gage using a familiar onscreen *QWERTY* keyboard.

Use the Gage’s navigation and (-)(+) buttons to enter annotations.

Annotations can be synchronized with PosiSoft.net and are included in all PosiSoft reports (see Accessing Stored Measurement Data, pg. 23).

NOTE: Annotations can also be created using PosiSoft.net (pg. 24) or PosiSoft Mobile (pg. 25).

Print

Sends a statistical summary and individual measurements to the optional Bluetooth wireless printer (see pg. 29).

NOTE: To cancel printing, press and hold the (-) and (+) buttons simultaneously.
Display (appears only if a batch is currently open)

The following user selectable display options are available:

- **Chart**: A real-time chart of batch readings

 - **x-y Chart** for
 - Single Layer Application

 - **Stack Chart** for
 - Multi-Layer Application

- **Image**: Batch image

- **Notes**: Instructions, descriptions or notes (see **Annotate**, pg.20)

- **None**: Default screen shows statistics

Shortcut: When a batch is open, press **Up** to scroll through the above display options.

NOTE: PosiSoft.net and PosiSoft Mobile are used to insert an **Image** and **Notes** into a batch.
Summaries (Advanced models only)

Displays a summary of all stored batches including the name, probe type, number of readings and type.

In the following example, Batch 3 (B3) indicates an “F” 6000 coating thickness probe was used to record a total of “6” readings in “PA2” mode.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Probe Type</th>
<th># of Readings</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>F</td>
<td>6</td>
<td>PA2</td>
</tr>
<tr>
<td>B2</td>
<td>F</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>UTG-C</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Press both (-)(+) buttons at any time to capture and save an image copy of the current display. The last 10 screen captures are stored in memory and can be accessed when connected to a computer (see PosiSoft USB Drive pg. 23).

Sample Screen Captures
Accessing Stored Measurement Data
PosiSoft solutions for viewing, analyzing and reporting data:

PosiSoft USB Drive - connect the PosiTector to a PC/Mac using the supplied USB cable to access and print stored readings, graphs, photos, notes and screen captures. No software or internet connection required. **USB Drive** must be selected (See pg. 26).

PosiSoft Software - Desktop Software for downloading, viewing and printing your measurement data.

PosiSoft Mobile *(Advanced models only)* - access readings, graphs, capture photos and update annotations through WiFi enabled devices, such as tablets, smart phones and computers.

PosiSoft Desktop Manager (PDM):
A small Windows based application which allows automatic two-way communication (synchronization) between the Gage and PosiSoft.net (internet connection required). When installed, PDM runs as a start-up application and resides in the Windows notification area (system tray) of a PC. PDM is available as a free download within your PosiSoft.net account or at www.defelsko.com/downloads

Register your Gage on PosiSoft.net to take full advantage of your Gage’s capabilities. See www.PosiSoft.net

NOTE: PDM is not required for WiFi enabled gages (pg. 29).
PosiSoft.net:
To enhance the operation of your Gage, all PosiTector users have access to the features provided by PosiSoft.net. It is a web-based application offering secure centralized management of readings.

After (1) a user account has been created, (2) a Gage has been registered, and (3) the PosiSoft Desktop Manager is downloaded and installed onto a Windows PC (not required for WiFi connected gages), synchronization of measurement data can be performed either manually or automatically whenever the PosiTector is connected to a web enabled PC (USB cable or Bluetooth wireless technology) or WiFi network (Advanced gages only). Gage measurements stored in memory are uploaded; images and batch notes are synchronized.

Uploaded data can be manipulated using a standard internet web browser from any location in the world - job site or head office. Reports and graphs with annotations and corporate logo can be generated. Data can be exported to XML or CSV (comma delimited) text files.

Measurement data can be shared with authorized users via a secure login from any computer and most web enabled devices including smart phones.

NOTE: A PosiSoft.net account is not required to Update (pg. 30) your PosiTector. Simply download and install PosiSoft Desktop Manager at www.defelsko.com/downloads

PosiSoft Software:
Desktop Software that can be installed onto your Windows PC and allows the user to download, view, print and analyze their measurement data.

Reports and graphs with annotations and corporate logo can be generated. Data can be exported to XML or CSV (comma delimited) text files.

NOTE: PosiSoft Software is available for use with DeFelsko’s complete line of electronic instruments and is available for download at www.defelsko.com/posisoft
PosiSoft Mobile:

Is a Gage-based software application featured in all PosiTector Advanced instruments (serial numbers 730,000+).

PosiSoft Mobile allows users to:

- browse stored measurement data including notes, images, statistics and charts
- update batch names/notes using your mobile device’s keyboard
- insert images directly into Gage batches using your mobile device’s camera or image library
- remotely view the live display of a working PosiTector & more

PosiSoft Mobile can be accessed from any WiFi enabled device using a standard web browser. Ideal for use with devices such as Windows Phone/Mobile, Blackberry (RIM), Android, Apple iOS and more.

In addition to browser based access, PosiSoft Mobile Managers are available for Apple iOS and Android users.

See www.defelsko.com/wifi/wifi_mobile
Multiple gages can be synchronized simultaneously when connected using multiple connections (for example two gages connected via USB and one gage connected via WiFi or Bluetooth). When selected, the Gage immediately synchronizes stored measurement data via USB, Bluetooth or WiFi to PosiSoft.net (internet connection required). PosiSoft Desktop Manager is required when using USB or Bluetooth.

Additional measurements added to memory while connected are synchronized only when the USB cable is disconnected, then reconnected or when the Sync Now option is selected.

Universal Serial Bus (USB) is a specification for communication between devices and a host controller (usually a personal computer). USB has effectively replaced a variety of interfaces such as serial and parallel ports.

The PosiTector uses a USB mass storage device class which provides a simple interface to retrieve data in a manner similar to USB flash drives, cameras or digital audio players.
When checked, any computer can view datasets stored in memory by navigating a virtual drive labeled “PosiTector” using the included USB cable.

A formatted HTML report is viewed by selecting the "index.html" or “START_HERE.html" file found in the root directory. Optionally, text ".txt" files located in each batch folder provide access to measurement values. Stored datasets and graphs can be viewed or copied using universal PC/Mac web browsers or file explorers.

When your PosiTector is first connected to your Windows PC via a USB cable, an enumeration process is started that installs device drivers without re-booting your computer. You may see several pop-up windows in the taskbar at the bottom right of your screen. Wait for the entire process to be completed before proceeding.

NOTE: When connected, power is supplied through the USB cable. The batteries are not used and the body will not automatically power down. If rechargeable (NiMH) batteries are installed, the Gage will trickle charge the batteries.
Retrieving stored screen captures
The last 10 screen captures (pg. 22) stored in memory can be accessed by navigating to the “screen_capture” directory within the “PosiTector” virtual drive.

BlueTooth
(Advanced models only)

PosiTector Advanced models have Bluetooth functionality to:

- **Communicate** with the PosiSoft Desktop Manager (PDM) in lieu of a USB cable.
- **Stream** individual datasets to a computer or Bluetooth wireless printer as they are taken.
- **Print** to the optional battery powered Bluetooth wireless printer.

On: Turns Bluetooth functionality **On.** When selected, the icon will appear on the display. To deactivate Bluetooth, select **Off.**

Pairing: The Gage and receiving device must be paired before stored or streamed datasets can be transmitted. For pairing instructions, see www.defelsko.com/bluetooth/

Info: Lists information about your current Bluetooth connection, including the currently paired device and MAC address.

Stream: When checked, the Gage will stream datasets to the paired Bluetooth Device as they are taken. Datasets can be streamed as they are taken to the optional Bluetooth printer or third-party computer software.
Bluetooth Wireless Printer

PosiTector Advanced models can output to the optional battery powered Bluetooth wireless printer one of two ways:

- Stream individual datasets as they are taken.
- Print stored batch datasets and summaries.

Begin by entering the Connect>Bluetooth menu. Turn Bluetooth ON and “Pair” the PosiTector to the printer. See: www.defelsko.com/bluetooth/

Streaming: In the Connect>Bluetooth menu, select the “Stream” tick box. All datasets will now be simultaneously displayed on the LCD and sent to the printer.

Printing: In the Memory menu, select “Print”.

<table>
<thead>
<tr>
<th>WiFi</th>
<th>(Advanced models only)</th>
</tr>
</thead>
</table>

Allows wireless communication with devices such as tablets, smart phones and computers connected to your local wireless network or portable mobile hot spot. See www.defelsko.com/WiFi

On/Off: Turns WiFi functionality On. When selected, the 🌐 icon will appear on the display. To deactivate WiFi, select Off.

Networks: The Gage will allow the user to add a new network and will automatically check for available local networks. Available networks detected by the Gage are listed on the screen along with any networks that the Gage has previously been connected to that are not currently within connection range.

Information: Gage displays information about the local WiFi network connection including...
- SSID: the network’s name
- State: displays if the Gage is connected to the network or not
- IP Address: the network’s IP Address. Users can enter this number into a web-browser of any WiFi enabled device that is connected to the same network in order to view the Gage’s synced batches through PosiSoft Mobile. (see pg. 25)
Setup: Allows user to setup a WiFi connection
- **IP Settings:** enter the IP information as follows... IP Type (DHCP or Static), IP Address, Gateway, Netmask, DNS1, DNS2.
- **Server Enable:** enables a connection between the network and the Gage.
- **Gage Name:** enter a name for the Gage (up to 14 Characters).
- **WiFi Reset:** erases all WiFi settings.

Updates
Determines if a software update is available for your Gage. If an update is available, a prompt will appear allowing the user to choose to perform the update at this time or not.

To perform an update the Gage must be connected to an internet connected PC with *PosiSoft Desktop Manager* (pg. 23), or *WiFi* network (pg. 29).

NOTE: Ensure that stored measurements are backed up to a PC or *PosiSoft.net*. The Gage may perform a **Hard Reset** (pg. 13) after completion of the update and ALL datasets in memory would be erased.

![Updates - Sample Screen](image)

Currently installing update 2 of 3 total

⚠️ **DO NOT** unplug the Gage during the update operation.
Application Notes

The PosiTector 200 uses an ultrasonic principle to measure coating thickness of most coatings on most substrates. An ultrasonic signal is a very high frequency sound wave. Like the echoes you hear when you shout in a large hall or canyon the PosiTector 200 listens for echoes from acoustic boundaries within your application.

The PosiTector 200 probe emits a high frequency sound pulse that travels into the coating via a coupling gel and reflects from ANY surface that is different in density. Coating thickness readings are obtained by measuring the time taken for the ultrasonic signal to propagate from the probe to the coating/substrate interface and back. The travel time is divided by two and multiplied by the velocity of sound in the coating to obtain the thickness of the coating. The strength of the reflected signal from the coating/substrate interface determines the ability of the Gage to measure the thickness of the coating. Since most applications are not homogeneous the Gage will "hear" many echoes when placed on a coating/substrate. The Gage "hears" ALL reflections within the measurement limits of the Gage and assumes the largest “echo” is the coating/substrate echo (single coating applications only). Adjustable measurement Ranges have been provided for the user to force the Gage to ignore echoes from unwanted boundaries within the sample. Several examples below help to illustrate the use of the Set Range (pg. 11) feature for specific applications.

Measurement of coatings with rough surfaces.

When rough coatings are measured, the Gage typically identifies the thickness from the top of the coating peaks down to the substrate (#1). Couplant fills the voids between the probe and the coating (#2) creating an additional interface. If echoes from the couplant/coating interface (#2) are stronger than the coating/substrate interface (#1), an adjustment (increase) of Lo Value may be required for the Gage to display the weaker (#1) echo.
Measurement of dense (hard) coatings.
A significant echo occurs at the probe/coating interface. The relative strength of this echo compared to the coating/substrate echo requires that Lo Value be increased.

Measurement of total thickness in multi-layer coating applications.
Multiple coating/coating/substrate interfaces may generate several echoes. The user may need to adjust the Gage’s Set Range (pg. 11) to ignore echoes from coating/coating interfaces.

Troubleshooting

Some common reports received by our Service Department along with possible causes. Most conditions however can be cleared with a Reset (pg. 13).

Gage does not turn on
Make sure the + and - battery terminals are positioned properly and that fresh batteries are being used.

Gage powers up but fails to stay on
Replace batteries with fresh batteries. If problem persists return Gage for service.

Gage readings are much lower than expected
Gage may be measuring surface roughness. Raise the value of Lo Range (see pg. 11).
Gage readings are much higher than expected
Gage may be measuring both the coating and substrate. Lower the value of Hi Range (See pg. 11).

Gage does not yield accurate or consistent results
See the Set Range (pg. 11) and Thickness Adjustment (pg. 12) sections to ensure the Gage has been optimized for your application. Check the Gage on traceable standards.

Gage displays an error message while attempting probe ZERO
Make sure to hold the probe in the air and ensure the probe is free of couplant and the probe tip area is clean. If problem persists, note the error message and contact our technical support department.

Gage displays dashed line “----” and emits low-tone buzz while attempting to obtain measurement
This occurs when the Gage is unable to obtain a measurement result. Ensure sufficient couplant (gel) has been applied to the surface of the coating and repeat measurement.

When the Gage is set up for multiple layers, “----” will be displayed for each layer the Gage is unable to obtain a measurement result for. The most common reasons for this is that the individual layers are too acoustically similar or are too thin for the Gage to distinguish between them. Reduce the number of layers the Gage is set up for and repeat measurement.
Power Supply / Battery Indicator

Power Source: 3 AAA alkaline, Lithium or optional Nickel-metal hydride (NiMH) rechargeable batteries. For best battery indicator results, ensure the appropriate Battery Type is selected in the Setup>Battery Type menu (pg. 17).

The battery indicator displays a full bar with fresh alkaline or fully charged batteries installed. As the batteries weaken, the bar will be reduced. When the battery symbol is low the Gage can still be used, but the batteries should be changed or recharged at the earliest opportunity. The Gage will turn off automatically when batteries are very low, preceded by a Low Battery Warning on the display.

⚠️ To retain all user settings and stored memory readings, only replace the batteries after the Gage has powered-down.

Battery performance decreases at low temperatures.

Additional Accessories

Rechargeable Battery Pack - 4 AAA eneloop batteries

The PosiTector can operate on rechargeable batteries and DeFelsko recommends the use of eneloop (NiMH) rechargeables. eneloop batteries combine the advantages of regular rechargeable batteries and disposable (Alkaline) batteries. They discharge very slowly and can be stored for long periods without having self discharge concerns. Eneloop batteries come pre-charged and ready to use immediately. See: www.eneloop.info

AC Power Cable Kit

An optional AC Power Cable Kit is available for continuous operation or battery charging through the PosiTector’s built-in USB port (as shown on page 22). This kit supplies several alternate power solutions for your battery-operated PosiTector. They allow the gage to operate continuously without the need for batteries.
Use the cable alone to connect a **PosiTector** to your PC's built-in USB port that acts as a continuous power source. Or connect the cable to the included power adaptor which plugs into any AC wall electrical outlet, 110 or 220V.

A selection of electrical plugs is included which are capable of dealing with most country’s outlets. The USB cable provided can also be used for **Accessing Stored Measurement Data** (See pg. 23).

USB Cable

A USB Cable is provided with every **PosiTector**. Replacement USB cables are available.

Couplant

One 4 oz. bottle of Ultrasonic couplant (gel) is provided with every **PosiTector 200** probe. Additional 4 oz. bottles are available and sold in a cases of 12.

Bluetooth Printer

This lightweight printer receives data from all **PosiTector** gages via Bluetooth wireless technology. It is battery-operated and prints readings and statistical summaries.

Nylon Case

Convenient soft shell nylon case for carrying a **PosiTector**. Case has compartments for Certificates of Calibration, instruction manuals and other accessories.

Protective Lens Shield

One lens shield is included with every **PosiTector** instrument. Additional package of five (5) thin plastic lens shields are available and ideal for protecting the **PosiTector** display from paint and overspray.
Coating Thickness Standards

Certified thickness Standards are used to verify the accuracy and operation of coating thickness gages and are an important component in fulfilling both ISO/QS-9000 and in-house quality control requirements. Contracts often specify that coating thickness measurements be taken by gages whose measurement accuracy is traceable to a National Metrology Institute such as NIST or PTB.

Standards are typically purchased as an accessory to coating thickness gages. Many customers find it more practical to verify the accuracy of their own gages in-house, rather than utilize DeFelsko’s calibration services. This is particularly true when many gages are in use and/or when accuracy verification is performed often.

There are 4 types of coating thickness standards available:

Certified Coated Metal Plates are the best solution for verifying the calibration, accuracy and operation of most magnetic, eddy current or ultrasonic coating thickness gages. They fulfill both ISO and in-house quality control requirements. At ±0.43µm (±0.017 mil) Certified Coated Metal Plates are the most accurate solution.

Certified Polystyrene Blocks are for use with C and D probes.

Certified Plastic Shims (foils) provide an economical alternative to coated metal plates. They have a reduced accuracy of ±2 µm (±0.08 mil). A coating thickness Gage measures shim thickness when this shim is placed over a rigid, flat surface.

Non-Certified Plastic Shims (foils) provide a quick operational check of the Gage and they allow the user to perform practice measurements when placed over a rigid, flat surface. A set of 5 shims is included with every PosiTector 200 probe.
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Technical Data

<table>
<thead>
<tr>
<th>PosiTector 200 Model</th>
<th>B/Std</th>
<th>B/Adv</th>
<th>C/Std</th>
<th>C/Adv</th>
<th>D/Std</th>
<th>D/Adv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measures total thickness</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Measures Individual Layers</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Graphic Display</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

Typical Applications

- **Polymer coatings on wood, plastic, etc.**
- **Coatings on concrete, fiberglass, etc.**
- **Thick, soft coatings like polyurea, asphaltic neoprene, very thick polymers**

Range*

- **13 – 1000 microns** (0.5 – 40 mils)
- **50 – 3800 microns** (2 – 150 mils)
- **50 – 7600 microns** (2 – 300 mils)

Accuracy

- **+/- (2 microns + 3% of reading)**
- **+/- (0.1 mils + 3% of reading)**
- **+/- (20um + 3% of reading)**
- **+/- (1 mil + 3% of reading)**

Minimum Individual Layer Thickness

- **-**
- **13 microns** (0.5 mils)
- **-**
- **50 microns** (2 mils)
- **-**
- **500 microns** (20 mils)

Thickness Standard

- **DeFelsko STDA3**
- **DeFelsko STDP6**
- **DeFelsko STDP4**

* Range limits apply to polymer coatings only.
** For multiple layer applications only. Dependent on material being measured.

Gage Size:

135 x 61 x 28 mm
(5.25” x 2.4” x 1.1”)

Weight:

140 g (4.9 oz.)
without batteries

Temperature Range:

0 to 40°C
(+32° to +104°F)

Conforms to: ASTM D6132 and ISO 2808
Returning for Service

Before returning the Gage for service…

1. Install new or newly recharged batteries in the proper alignment as shown within battery compartment.

2. Examine the probe tip for dirt or damage.

3. Perform a **Hard Reset** (pg. 13) and a **Zero** (pg. 11)

4. Place a plastic shim onto a hard surface (i.e. glass) and attempt a measurement. (pg. 8)

IMPORTANT:

If you must return the Gage for service, please fill out and include the Service Form located at www.defelsko.com/support with the Gage. Be sure to also include the probe, your company name, company contact, telephone number and fax number or email address.

Limited Warranty, Sole Remedy and Limited Liability

DeFelsko's sole warranty, remedy, and liability are the express limited warranty, remedy, and limited liability that are set forth on its website: www.defelsko.com/terms

This manual is copyrighted with all rights reserved and may not be reproduced or transmitted, in whole or part, by any means, without written permission from DeFelsko Corporation.

DeFelsko and PosiTector are trademarks of DeFelsko Corporation registered in the U.S. and in other countries. Other brand or product names are trademarks or registered trademarks of their respective holders.

Every effort has been made to ensure that the information in this manual is accurate. DeFelsko is not responsible for printing or clerical errors.